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On the hyper Wiener index of hexagonal chains  
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The hyper Wiener index of a molecular graph is defined as one half of the sum of the distances and the square distances 
between all (unordered) pairs of vertices of the graph. In this paper computation of the hyper Wiener index of some 
extremal hexagonal chains are purposed. 
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1. Introduction 
 
A real number that describes a molecular graph is 

called a topological index. Topological indices are one of 

the descriptors of molecules that play an important role in 

structure property and structure activity studies, 

particularly when multivariate regression analysis, 

artificial neural networks, and pattern recognition are used 

as statistical tools. The hyper Wiener index is one of the 

recently conceived distance-based graph invariants, used 

as a structure-descriptor for predicting physico–chemical 

properties of organic compounds (often those significant 

for pharmacology, agriculture, environment-protection 

etc.). The hyper Wiener index WW(G) of a graph G was 

proposed by Randic et al [1], as the generalization of the 

much studied Wiener index W (G) of graph invariant [2]. 

Recall that W (G) is defined as the sum of [3] distances 

between pairs of vertices of the graph. Let G be a simple 

connected graph. The sets of vertices and edges of G are 

denoted by V (G) and E (G), respectively. For vertices u 

and v in V (G), we denote by d (u, v) the topological 

distance i.e., the number of edges on the shortest path, 

joining the two vertices of G. The hyper Wiener index of 

G is defined as follows: 
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A hexagonal system is a connected geometric figure 

obtained by arranging congruent regular hexagons. A 

hexagonal system is said to be simple if it can be 

embedded into the regular hexagonal lattice in the plane 

without overlapping of its vertices. Hexagonal systems are 

considerable importance in theoretical chemistry because 

they are the natural graph representation of benzenoid 

hydrocarbon [4-7]. 

A hexagonal chain is a hexagonal system with the 

properties that (a) no vertex is incident with three 

hexagons, and (b) no hexagon is adjacent to more than two 

hexagons. Suppose that H is a hexagonal system. Denote 

by Hc the graph whose vertex set is the set of the centers of 

hexagons in H, and edge set of lines connecting the centers 

of any two adjacent hexagons. A hexagonal system H is a 

hexagonal chain if the graph Hc is a path. In this paper we 

consider both planar and non-planar (helicenic) hexagonal 

chains. This means that Hc may be a helix. Hexagonal 

chains are the graph representation of an important 

subclass of benzenoid molecules, unbranched 

catacondensed benzenoids molecules, which play a 

distinguished role in the theoretical chemistry of 

benzenoid hydrocarbons. 

 

 
 

Fig. 1. 

 

 

The extremal graphs with respect to some useful 

topological indices such as Wiener index in chemical 

applications have been extensively studies, any many 

results concerning this topic can be found in [8-10]. 

We write Bn= C1 C2… Cn  if  C1, C2 ,…, Cn  are the n 

hexagons of  Bn, where Ci and Ci+1 are adjacent for 

i=1,2,…, n-1. A hexagonal chain Bn, where n>2, can be 

obtained from a hexagon by a stepwise addition of 

terminal hexagons. At each step k=2,3,…, n , a type of 

addition is selected from the three possible constructions 

k

i

kk BBB 1 ,  for i=1,2 or 3, as depicts in Fig 2. We 

shall call the three possible constructions type I, type II 

and type III, respectively. 

A hexagonal chain Bn is called linear hexagonal 

chain, denoted by Ln, if each mode of attachment of the 

hexagons is realized with type II construction (see Fig. 2). 

A hexagonal chain Bn is fully angular if each mode of 

attachment of the hexagons is realized with either type I 

construction or a type III construction. A fully angular 
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hexagonal chain with n hexagons is called zig-zag 

hexagonal chain, denoted by Zn, if each mode of 

attachment of the hexagons is realized alternated with a 

type I construction and a type III construction (see Fig. 3). 

It is called helicene hexagonal chain, denoted by Hn if all 

mode of attachment of the hexagons is realized with type 

I, or symmetrically, type III constructions (see Fig. 4). A 

fully angular hexagonal chain with n hexagons is called 

serpent hexagonal chain, denoted by Sn, if each mode of 

attachment of the hexagons is realized alternated with 

three type I construction and three type III construction 

(see Fig. 4). In this paper we compute the hyper Wiener 

index of Ln, Zn and Hn in term of whose length of the 

hexagonal chain. 

  

 

2. Results and discussion 
 

In this section we will obtain exact formulas for the 

hyper Wiener index of Ln, Zn and Hn in term of n, the 

length of these hexagonal chains.  For this purpose sum of 

the distances between an arbitrary vertex of these  

hexagonal chains and other vertices of the graph must be 

computed. At first we consider the linear hexagonal chain. 

Among hexagonal chins with fixed number of hexagon, Ln 

has maximum Wiener index [13] and consequently hyper 

Wiener index. 

Theorem 1. The hyper Wiener index of the linear 

hexagonal chain is computed as follows: 
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Proof: Let v1 and v2 be two adjacent vertices on i-th 

hexagon cycle of Ln. Symmetry of the graph shows that 

the vertices of Ln can be considered in two different types 

such as v1 or v2 on the first row or on the second row of the 

graph. It is because that sum of the distances between v1 or 

v2 and other vertices of the graph can be computed by two 

different methods. So it suffices that we compute sum of 

the distances between v1 or v2 and all of the other vertices 

of Ln. For this purpose we will calculate the distances 

between v1 (or v2) and the vertices on the first and second 

row of Ln where located before and after of v1 (or v2) 

separately.  

 

 

 

 
Fig 2. The graph of linear hexagonal chain. 

 

A simple computation shows that sum of the distances 

and the square distances between v1 and vertices on the 

first row of Ln is equal to 
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Also sum of the distances and the square distances 

between v1 and vertices on the second row of Ln is equal to 
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If d1(i) denotes sum of the distances and the square 

distances between v1 and other vertices of Ln, then 
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Now let d2(i) denote sum of the distances and the 

square distances between v2 and other vertices   of  Ln. 

Similar argument shows that  
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Thus the hyper Wiener index of Ln can be computed 

by using d1(i), d2(i) and (1) as follows:  
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Therefore the proof is completed.                                                                                                     

In continue we will compute the hyper Wiener index 

of zig-zag hexagonal chain by using the exact formula of  

the Wiener index of Zn where had been obtained by 

dobrynin et al [9]. Among hexagonal chains where each 

mode of attachment of the hexagons is realized with type I 

construction and type III construction (zig-zag 

construction) Zn has minimum Wiener [9] and 

consequently hype Wiener index. 

Theorem  2. The hyper Wiener index of zig-zag 

hexagonal chain is given as follows: 
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Proof: Let Ci denote the i-th hexagon cycle of Zn. We 

consider four vertices v1, v2, v3, v4 on Ci (see Fig. 3) and 

obtain a formula to computation sum of the square 
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distances for these vertices. If dj(i) denotes sum of the 

square distances between vj and other vertices of Zn for 

j=1,2,3,4, by similar computation where had been used in 

Theorem 1 we have  
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Fig. 3. The graph of zig-zag hexagonal chain. 

 

 

          

On the other hand the wiener index of Zn is computed 

as follows: 
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So the hyper Wiener index of Ln can be computed by 

using dj(i) for j=1,2,3,4 and (1) as follows:  
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Therefore the proof is completed.                                                            

In the following Theorem the hyper Wiener index of 

helicene hexagonal chains will be computed. Among 

Fibonacenes with fixed number of hexagonal Hn has 

minimal Wiener [9] and consequently hyper Wiener index. 

Theorem 3. The hyper Wiener index of helicene  

hexagonal chain is computed as follows: 
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 Proof: Let Ci denote the i-th hexagon cycle of Hn. 

Similar to Zn we consider four vertices on Ci where are 

labeled by v1, v2, v3, v4 (see Fig. 4). If dj(i) denotes sum of 

the square distances between vi and other vertices of Hn we 

have  
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Fig. 4. The graph of  helicene hexagonal chain. 
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 so the 

hyper Wiener index of Hn can be computed by using dj(i) 

for j=1,2,3,4 and (1) as follows 
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Therefore the proof is completed.                                                                                                                                                             

At least we will compute the hyper Wiener index of 

serpent hexagonal chains. Among simple hexagonal chains 

with fixed number of hexagonal Sn has minimal Wiener [9] 

and consequently hyper Wiener index. 

 

 

 
 

Fig. 5. The graph of serpent hexagonal chain. 

 

 

 Theorem 3. The hyper Wiener index of serpent  

hexagonal chain is computed as follows: 
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Where α is given as 
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 Proof: The results can be obtained by using similar 

argument of Theorem 2 and 3.                 
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